Предел Швингера покорен? Ученые создают свет невиданной мощности

Предел Швингера покорен? Ученые создают свет невиданной мощности

Новый метод позволяет достигать рекордных интенсивностей света.

image

Исследователи из нескольких ведущих научных центров Франции - LIDYL, CEA, CNRS и Университета Париж-Сакле - разработали новый перспективный метод для достижения беспрецедентно высоких интенсивностей света в лабораторных условиях.

Их идея заключается в использовании строго сфокусированных лазерных импульсов с эффектом Доплера - дополнительным усилением света за счет движения рассеивающих его частиц. Благодаря этому ученые рассчитывают приблизиться к так называемому пределу Швингера - критической интенсивности электромагнитного поля, при которой должны проявляться новые квантовые эффекты в сильных полях.

Подробно новая методика описана в статье, опубликованной в авторитетном научном журнале Physical Review Letters. Если ее удастся успешно реализовать на практике, это может открыть путь к исследованию ранее недоступных физических режимов при экстремальных напряженностях электромагнитных полей.

«Идея появилась в нашей команде в 2019 году, и с тех пор она активно изучалась в сотрудничестве с Национальной лабораторией им. Лоуренса в Беркли», - рассказали авторы статьи Анри Винсенти и Нил Заим. Ученые разрабатывают новую технику для создания источников света экстремальной интенсивности, что позволит изучать сильнополевой режим квантовой электродинамики (SF-QED).

Теория и эксперимент

Квантовая электродинамика (QED) — одна из самых точных теорий в физике. Однако ее сильнополевой режим остается малоизученным из-за трудностей экспериментального наблюдения.

Теория SF-QED , разработанная десятилетия назад, предсказывает появление новых физических явлений при очень сильных электромагнитных полях. К таким явлениям относятся излучение гамма-лучей и образование пар частица-античастица.

До сих пор экспериментально воспроизвести режимы, описываемые SF-QED, не удавалось. Дело в том, что для этого требуются электромагнитные поля, близкие к пределу Швингера (около 10^18 Вольт/метр или 10^29 Вольт/см^2). Такие колоссальные напряженности поля на много порядков превышают возможности современных лазеров.

Однако недавно ученые Винсенти и Заим предложили метод, который потенциально может повысить интенсивность лазерных импульсов на 2-5 порядков величины. Если этот метод окажется успешным, то достижение напряженностей поля 10^25-10^28 Вольт/см^2 станет возможным. Это, в свою очередь, позволит экспериментально исследовать новую физику сильных полей, предсказанную теорией SF-QED.

Будущие эксперименты и перспективы

В своей статье ученые представили результаты компьютерного моделирования, показавшие, что их метод способен инициировать множество явлений, предсказываемых SF-QED теорией. Например, взаимодействие усиленного светового импульса с твердотельной мишенью может приводить к образованию плотных плазменных сгустков, испускающих интенсивное гамма-излучение и состоящих из пар электрон-позитрон.

«Мы ожидаем, что подобные эксперименты откроют новые горизонты в физике плазмы и квантовой электродинамике», - отметил один из авторов, Винсенти. В ближайших планах ученых - применить предложенную методику в реальных опытах на крупных лазерных установках по всему миру. Главная задача - достичь максимально возможных интенсивностей световых импульсов в реальных экспериментальных условиях.

Если этого удастся добиться, то разработанная методика может стать ключом к прорывным исследованиям и установлению новых рекордов в области сверхинтенсивных световых полей и квантовой электродинамики в целом.