Космическая слежка: NASA и IBM создали ИИ для автоматизированного анализа спутниковых снимков

Космическая слежка: NASA и IBM создали ИИ для автоматизированного анализа спутниковых снимков

Любое изменение ландшафта Земли, будь то лесной пожар или наводнение — сразу попадёт в объективы исследователей.

image

В этом месяце компании IBM и NASA совместно выпустили в открытый доступ искусственный интеллект под названием Prithvi. Эта модель предназначена для анализа спутниковых снимков и потенциально может помочь учёным в изучении изменений на поверхности Земли.

Prithvi — это своеобразный трансформер на основе компьютерного зрения. Модель относительно компактна и содержит 100 миллионов параметров. Она была обучена на снимках за год, собранных в рамках программы Harmonized Landsat Sentinel-2.

В дополнение к основной модели доступны три варианта Prithvi, адаптированные для распознавания наводнений, следов от лесных пожаров, а также сельскохозяйственных культур и прочих изменений ландшафта. Пользователь загружает спутниковый снимок, а ИИ выделяет и классифицирует различные области на изображении.

По словам разработчиков, эта технология позволит автоматизировать мониторинг изменений поверхности планеты, отслеживая эрозию почв, влияние лесных пожаров, засух и т.п.

Демоверсия модели для классификации сельхозугодий доступна на сайте IBM. Пользователи могут загрузить собственные снимки или воспользоваться готовыми примерами для классификации урожая, водоёмов, следов пожаров или для реконструкции изображений.

«Мы считаем, что базовые ИИ-модели потенциально могут изменить способ анализа данных наблюдений и помочь нам лучше понять планету. Свободное распространение таких моделей может многократно увеличить их пользу», — заявил главный научный специалист NASA Кевин Мерфи.

Разработчики утверждают, что Prithvi на 15% превосходит существующие решения в анализе геопространственных данных. При этом для обучения модели потребовалось в два раза меньше маркированных данных, чем обычно.

Обучение Prithvi проводилось на суперкомпьютерном кластере Vela компании IBM. А адаптация модели для распознавания наводнений заняла всего час на мощностях графического процессора Nvidia V100.

Коммерческая версия Prithvi будет представлена позже в этом году. Разработчики призывают научное сообщество оценить возможности этой базовой ИИ-модели для решения различных задач и поделиться обратной связью.